MACHXO2 入门开发板手册

文档版本号	更新内容
V1.0	2021年6月5日创建
V1.1	2023年8月1日修改图,增加按键
V1.2	2024年3月6日 增加烧录细节

技术支持与反馈

深圳市飞录科技有限公司提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.szfpga.com

E-mail: support@szfpga.com

目录

1.	概述	4
2.	芯片说明	6
3.	管脚说明	7
5.	开机测试	. 11
6.	编译 Demo 程序	. 12
7.	下载运行	. 14
8.	包装信息	. 19
9.	订货信息	. 20

1. 概述

非常感谢选择 SZFPGA MACHXO2 入门开发板。

本手册描述怎么使用 MACHXO2 入门开发板,来测试和评估 LATTICE 厂家 MACHXO2 的 芯片。开发板最大化程度,可以方便定制自己产品和方案。

LATTICE 是一家老牌的 FPGA 厂家。在 CPLD 和 FPGA 低成本,小封装独树一帜。特别在 消费电子,小型化设备,控制领域用的比较多。

MACHXO2 入门开发板芯片型号为 MACHXO2 入门开发板采用 Lattice 的 MACHXO2 家族 系列芯片,LCMXO2-1200HC 或者 LCMXO2-2000HC CPLD 芯片。MACHXO2 系列芯片具有低功 耗,瞬时启动,高安全性,低成本,内置 SPI/I2C,内置用户 Flash 等特点。

MACHXO2入门开发板提供 MACHXO2 基本功能电路,引出所有 IO 口。并且将 IO 数据线 缆已经做了等长处理。其中 VCC 和 VCCIO 电源是独立,可以兼容 ZE 和 HC 芯片功能。而 VCCIO 电源支持多个电源,选择从 1.2V、1.8、2.5、3.3V。

MACHXO2 入门开发板设计,兼容 MACHXO2 LQFP100 封装,从型号 640HC 到 2000HC 系 类。HC 和 ZE 同样可以换,只需要改修 VCC 电压即可。

MACHXO2 入门开发板特性:

- 主芯片: LCMXO2-1200HC 或者 LCMXO2-2000HC。
- 内置配置 Flash,无需外部配置芯片。
- 内核,辅助电源, IO 电源独立。
- VCCIO 电源多个选择, 1.2V、1.8V、2.5V、3.3V, 无需电平转换芯片。
- 全部 IO 引脚引出,并在引脚座标记,方便操作识别
- 全部 IO 做等长处理,芯片时序保证。
- 芯片内置晶振。
- 板载晶振 50M,宽电压支持 1.8-3.3V。
- 2个LED。
- 电源 DC5.2mm 接口,结实耐用。
- 低功耗, USB 转 DC 5V 供电。
- 多个下载口,单排下载口以及冗余 2B 下载口。

2. 芯片说明

芯片型号为 LCMXO2-1200HC 或者 LCMXO2-2000HC, LQFP100 封装, 封装是 LQFP100, 从 640HC 到 2000HC 芯片资源如下表所示。XO2-1200 资源 LUT 1280, 包含一个 PLL, 7 个 9Kb 的 EBR。XO2-2000HC, 资源 LUT 2112, 一个 PLL, 8 个 9Kb 的 EBR。

MachXO2 内置晶振,频率可从 133-2.08 范围内。

MachXO2 的全系列芯片都是自带硬核 I2C, SPI, Timer, 用户 Flash,可以用于电机控制 产品。硬核总线是通过 WISHBONE 总线控制线,详见手册<Using User Flash Memory and Hardened Control Functions in MachXO2 Devices>。

		XO2-	X02-	XO2-	XO2-	XO2-	XO2-	XO2-	XO2-	XO2-
		256	640	640U ¹	1200	1200U ¹	2000	2000U ¹	4000	7000
LUTs		256	640	640	1280	1280	2112	2112	4320	6864
Distributed RAM (kbits)		2	5	5	10	10	16	16	34	34
EBR SRAM (Kbits)		0	18	64	64	74	74	92	92	240
Number of EBR SRAM BI	ocks (9 Kbits)	0	2	7	7	8	8	10	10	26
UFM (kbits)		0	24	64	64	80	80	96	96	256
	HC ²	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Device Options:	HE ³						Yes	Yes	Yes	Yes
	ZE ⁴	Yes	Yes		Yes		Yes		Yes	Yes
Number of PLLs		0	0	1	1	1	1	2	2	2
	I ² C	2	2	2	2	2	2	2	2	2
Hardened Functions	SPI	1	1	1	1	1	1	1	1	1
	Timer/Counter	1	1	1	1	1	1	1	1	1
Packages		1				1/0				
25-ball WLCSP ⁵										
(2.5 mm x 2.5 mm, 0.4 n	nm)				18					
32 QFN ⁶		24			24				<i>C</i>	d d
(5 mm x 5 mm, 0.5 mm)		21		s	21					
36-ball WLCSP ⁵					20					
(2.5 mm x 2.5 mm, 0.4 m	nm)				28					
48 QFN ^{8, 9}		40	40		<i></i>		2		20	0.
(7 mm x 7 mm, 0.5 mm)		40	40			0	52	2	52	
49-ball WLCSP ⁵							20			
(3.2 mm x 3.2 mm, 0.4 m	nm)						30			
64-ball ucBGA		44								
(4 mm x 4 mm, 0.4 mm)		1 1 1 2 1 1 2			8	0	82	2	82	2 1
81-ball WLCSP ⁵	2								63	
(3.8 mm x 3.8 mm, 0.4 n	וm)	-								
84 QFN ²									68	
(7 mm x 7 mm, 0.5 mm)				76	2		. h.	5		
100-pin TQFP		55	78		79		79			
(14 mm x 14 mm)							- P			
132-ball csBGA		55	79		104		104		104	
144-nin TOEP		1		1	-	2		8	P	
(20 mm x 20 mm)				107	107		111		114	114
184-ball csBGA7										
(8 mm x 8 mm, 0.5 mm)									150	
256-ball caBGA				20 C			205		206	205
(14 mm x 14 mm, 0.8 m	m)						200		200	200
256-ball ftBGA						206	206		206	206
(17 mm x 17 mm, 1.0 m	m)						200			
332-ball caBGA									274	278
(17 mm x 17 mm, 0.8 m	m)			s		2			1	
484-ball ftBGA								278	278	334
(23 mm x 23 mm, 1.0 mi	m)							1		

封装从最小的 wlcsp25 到最大的 484FTBGA 封装。Machxo2 内置 8:1 的同步源端,可以用 DDR,DDR2, LPDDR 接口。支持 7:1 模式,可以用 LVDS 显示屏接口转换。

3. 管脚说明

1) LED 说明

LED2 THE THE LED3 R34 LED3 HELD R35		
功能	方向	FPGA 引脚
LED0	输入	76
LED1	输出	60

2) 晶振

功能	方向	FPGA 引脚
50MHz	输入	63

3) 按键

功能	方向	FPGA 引脚
KEYO	输入	58
KEY1	输入	59

4)排针连接

2 个 2*30P 的双排排针,将所有的 IO 引出。并且,板上丝印已经注明 IO 管脚功能名称。 注意,排针输出和板子上其他的功能是复用。IO 前缀代表是 FPGA 管脚位置。

J6 连接器引脚说明

IO 名称	功能引脚	IO 名称	功能引脚
1	5V	2	5V
3	5V	4	5V
5	5V	6	5V
7	GND	8	GND
9	GND	10	GND
11	GND	12	GND
13	NC	14	NC
15	1062	16	NC
17	1064	18	IO63
19	1066	20	IO65
21	1068	22	1067
23	1070	24	1069

25	1074	26	1071
27	1076	28	1075
29	1078	30	1077
31	1082	32	PROGRAM
33	1084	34	IO83
35	SCL	36	SDA
37	VCCIO	38	VCCIO
39	1088	40	1087
41	ТСК	42	TMS
43	TDO	44	TDI
45	1097	46	IO96
47	1099	48	IO98
49	102	50	101
51	104	52	103
53	108	54	107
55	IO10	56	109
57	VCCIO	58	VCCIO
59	1013	60	1012

J7 连接器引脚说明

IO 名称	功能引脚	IO 名称	功能引脚
1	5V	2	5V
3	5V	4	5V
5	5V	6	5V
7	GND	8	GND
9	GND	10	GND
11	GND	12	GND
13	NC	14	NC
15	1014	16	NC
17	IO16	18	IO15
19	IO18	20	IO17
21	1020	22	IO19
23	1024	24	IO21
25	1027	26	IO25
27	1029	28	IO28
29	1031	30	IO30
31	1034	32	1032
33	1036	34	1035
35	1038	36	1037
37	VCCIO	38	VCCIO
39	1040	40	IO39
41	1042	42	IO41
43	1045	44	1043

45	1048	46	1047
47	1051	48	IO49
49	1053	50	1052
51	1057	52	1054
53	1059	54	1058
55	IO61	56	IO60
57	VCCIO	58	VCCIO
59	NC	60	NC

4. 软件开发

开发软件使用 Diamond。 diamond 下载软件地址: https://pan.baidu.com/s/15TLVFNUvzoKJOxgxPiGi7A 提取码: qtm4 提取码: qtm4 或者上 lattice 公司网站下载 https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond

5. 开机测试

入门开发板在出厂前,已将测试程序下载到内部,接通电源即可检查开发板是否正常。 确保 J9 VIO 电源跳线确保短接,并且在设定电源。

连接好 USB 转 DC 电源线,插上电源,可以显示单个灯交替闪烁。

6. 编译 Demo 程序

通过 Diamond 打开开发板资料中 code\testcpld - 1200hc 目录下 testcpld,并对工程进行 编译。注意工程要在英文目录,不要带中文路径上。

- 1) 打开 testcpld.ldf 工程,在"File List"窗口中显示如下信息,其中:
 - ◆ LCMXO2-1200HC-4TG100C: Lattice MACHXO2 型号;
 - ◆ test_cpld.v: Verilog 代码;
 - ◆ testcpld.lpf: 物理约束文件。

File List
✓ I testcpld
LCMXO2-1200HC-4TG100C
✓ Strategies
🗒 Area
👺 I/O Assistant
Quick
🔅 Timing
🔄 Strategy1
Ƴ ⊞ impl1
💙 📙 Input Files
🛣 src/test_cpld.v
Synthesis Constraint Files
LPF Constraint Files
testcpld.lpf
Debug Files
Script Files
Analysis Files
Programming Files
impl1/impl1.xcf
File List Process Hierarchy

2) 切换到"Process"窗口,确定勾选选择 JEDEC File 和 Bitstream File,选择 Export Files,在 Export Files 右键选择 Rerun All

- 3) 编译完成后,会显示如下编译完成信息,显示 ✓ 号。产生的 JED 文件的保存地址
- 为: ..testcpld 1200hc\impl1\testcpld_impl1.jed。 bitstream File 为 testcpld_impl1.bit。
 - 🗹 💜 Bitstream File
 - 🗹 💜 JEDEC File

```
File List Process Hierarchy---Post Map Resources
Dutput
Saving bit stream in "testcpld impl1.jed".
_____
UFM Summary.
_____
                511 Pages (128*511 Bits).
UFM Size:
UFM Utilization: General Purpose Flash Memory.
Available General Purpose Flash Memory: 511 Pages
                                          0 Page.
Initialized UFM Pages:
Total CPU Time: 2 secs
Total REAL Time: 2 secs
Peak Memory Usage: 254 MB
Done: completed successfully
 Output Error Warning* Info*
Ready
```

7. 下载运行

1) 将下载器连通开发板和 PC 机,打开电源开关,

连接模式有两种:

A. 只使用 2X7 灰色排线,灰色排线使用下载器 2B 的 5V 电源。

B. 使用 DC 和单端线缆。此类可以兼容其他的 2A 下载器。2B 下载器线缆也可以支持。 DC 插入电源电压是 5V,线缆根据定义插入,VCC, TDO,TDI,TMS,TCK,GND。

2) 在 Diamond 中"Tools"菜单中,选择"Programmer",

弹出内置的 Programmer 界面

3) 在右边栏目 Cable Settings 中选择, Detect Cable

Detect	Cable
Cable:	HW-USBN-2 -
Port:	FTUSB-0 •
Custom port:	
Programming S	Speed Setting

注意: 在 Windows10 由于串口初始化,会导致 FTUSB-0 和 FTUSB-1 顺序错误,必须确认 在 A 通道。对于新版本的 HW-USBN-2B,直接选择 FTUSB-0 就可以。

…p/code/testcp		
	Det	ect Cable
	Cable:	H₩-USBN-2B (F •
	Port:	FTUSB-0
	Custom port:	
Programmer: Multiple Cal	bles Detected	? ×
Cable 1: USB2	2-HS A Location 00 2-HS B Location 00	00) 01)
Cable 1: USB2 ← FTUSB-0 (Dual RS23) ← FTUSB-1 (Dual RS23)	2-HS A Location 00 2-HS B Location 00	00) D1)

2)首先可以点 Scan 扫描芯片,找到开发板是否存在芯片。

Enable	Status	Device	Operation	
		LCMXO2-1200HC	FLASH Erase,Program,Verify	…p/code/testcp
			· 🗌 🎒 🖨 🔢	

出现黄色,请点击这个黄色名称,然后保存。

3) 在 Operation 双击,弹出对话框,选择 Static RAM Cell Mode 操作模式, SRAM Fast Program 下载文件,文件 File 选择在 impl1 中 bit 文件。

	Enable	Status	De	vice	Ope	eration		
1		PASS	LCMXO2-1200H	C	FLASH Erase, Program	m,Verify		p/code.
<			MachXO2 - L General De Device Oper Access mode Operation: Programming Programmin	CMXO2-1200HC - evice Information ation : Static RAM SRAM Fast : Options ng file: pld - 120	Device Properties Cell Mode Program DOhc/impl1/testcpld_ OK	? _impl1.bit]. Cance	×	

4) 下载文件,点击绿色按钮

Output
INFO - Check configuration setup: Start.
INFO - JTAG Chain Verification. No Errors.
INFO - Check configuration setup: Successful.
INFO - Devicel LCMXO2-1200HC: SRAM Fast Program
INFO - Operation Done. No errors.
INFO - Elapsed time: 00 min : 03 sec
INFO - Operation: successful.

5) 显示效果,灯闪烁

6) 烧录 JED

对于 SRAM,断电是会消失的,所以烧录要 jed 文件,可以保存在 FPGA 内部的配置文件中。选择 operation 中,Access mode 选择 flash progarmming mode。在 operation 中选择 FlASH Erase, program, Verify。在 programming file 选择 jed 的文件。

General Device Inform	ation
Device Operation	
Access mode:	Flash Programming Mode
Operation:	FLASH Erase, Program, Marify
	200HC/blink_led_debug/project/implf/blink_led_impl1.jed .
Programming file: 1/1:	
Programming file: [/1:	OK Can

8. 包装信息

- 1) MACHXO2 入门开发板
- 2) USB 转 DC5.2mm 线缆

9. 订货信息

产品名称	备注
MACHXO2 入门开发板 1200	主芯片型号是 LCMXO2-1200HC-4TG100C
MACHXO2 入门开发板 2000	主芯片型号是 LCMXO2-2000HC-4TG100C